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SUMMARY

We describe, for simulation of �ows with moving interfaces, a computational method based on the edge-
tracked interface locator technique (ETILT). The method described has been designed by bearing in
mind the ease in managing a node-based interface representation and the interface sharpness and volume
conservation features of the Moving Lagrangian Interface Technique. We evaluate the performance of
the method with a number of test problems: �lling of a step cavity, gravity-driven �ow of an aluminium
alloy in an obstructed channel, collapse of a liquid column, and the bore problem. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many engineering problems and manufacturing processes, such as channel �ows or mould
�lling, require time-dependent analysis of �ows with moving two-liquid interfaces or free
surfaces. Development of computational tools needed to address the challenges present in
this class of problems has been a major area of research interest. Speci�cally, dominant
advective e�ects during the update of the moving interfaces, volume-conserving prediction of
the interface location, and accurate computation in presence of large di�erences in material
properties between the two �uids are some of the current issues.
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Di�erent numerical techniques have been proposed to analyse �ow problems with moving
interfaces and free surfaces. These can be categorized into two main groups: moving-mesh
and �xed-mesh techniques. The arbitrary Lagrangian–Eulerian (ALE) technique [1, 2] and the
deformable-spatial-domain=stabilized space–time (DSD=SST) method [3–5] are both moving-
mesh formulations. In these methods the interface is tracked with the moving mesh, and the
mesh is updated every time step to accommodate the tracking. Such techniques have good
numerical accuracy, but the frequency of remeshing may become too high when complex and
very unsteady interfaces need to be tracked. In an interface-capturing technique, on the other
hand, typically a �xed mesh is used during the analysis by de�ning an interface function
identifying the two �uids. The interface position is represented by the midpoint value of that
interface function [6, 7]. The nodal values of this interface function (or pseudo-concentration
function) are the additional unknowns in the problem, and a time-dependent advection equation
governs the evolution of the interface function. Solution of the �ow equations and the ad-
vection equation are based on stabilized formulations, and therefore the algorithm is rendered
stable in the presence of dominant advective terms, without introducing excessive numerical
dissipation. The stabilization also allows us to use equal-order interpolation functions for all
unknowns involved. This class of methods has been successfully used, for example, in forming
processes and mould �lling analyses [8–11]. More recently additional research has focused on
increasing the accuracy in representing the interface and better volume conservation [12–15].
Among them, the enhanced-discretization interface-capturing technique (EDICT) [12] was pro-
posed as a way to enrich the interpolation near the interface. Other new methods and ideas
developed to increase the scope and accuracy of interface-tracking and interface-capturing
techniques were also described in References [12–15].
An alternative formulation based on using �xed �nite element meshes consists of indepen-

dently de�ning a surface mesh (1D in 2D cases and 2D in 3D cases) represented by addi-
tional marker points. The positions of these points are calculated at each time step by using a
Lagrangian scheme, where di�erent material properties are assigned at each side of the inter-
face mesh [16–18]. Although reasonably satisfactory results were obtained with this method,
some drawbacks in volume conservation were observed [18]. To improve the performance
of this class of techniques, a global-mass-corrector algorithm has recently been developed.
Moreover, since the material properties are not smooth within the elements crossed by the
interface, an enhanced spatial integration technique has been developed to properly capture
such material discontinuities. This improved method, which we call the moving Lagrangian
interface technique (MLIT) [19, 20], has been applied to 2D analysis of two-�uid problems.
With the purpose of maintaining the ease in managing interfaces de�ned by a node-based

approach and emulating the main features of the MLIT (i.e. interface sharpness and volume
conservation) a new �nite element approach, called the edge-tracked interface locator tech-
nique (ETILT), was introduced in Reference [12]. More recent versions of the ETILT were
proposed in References [21–23]. In the present work we propose an algorithm based on the
ETILT. The objective is to test the formulation by checking its numerical performance on
problems with moving interfaces, to assess its main features, and to compare it with the
existing techniques.
The proposed technique is brie�y described in Section 2, where comments on its im-

plementation and remarks on the observed numerical behaviour are included. In Section 3,
we present four numerical examples: �lling of a step cavity, gravity-driven �ow of an alu-
minium alloy in an obstructed vertical channel, collapse of a liquid column, and the bore
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problem. The results obtained are compared to those obtained with the MLIT and a standard
interface-capturing technique, as well as those obtained in other numerical studies and also
experimental investigations.

2. EDGE-TRACKED INTERFACE LOCATOR TECHNIQUE (ETILT)

In the ETILT, we de�ne the interface position with an edge-tracked representation of the
interface function, namely ’he, such that the interfaces are represented by a collection of
positions along the �nite element edges crossed by the interfaces. Nodes of the �nite element
mesh belong to ‘chunks’ of Fluid 1 or Fluid 2. An edge either belongs to a chunk of Fluid 1
or Fluid 2 or it is crossed by the interface. Each element is either fully �lled by a chunk
of Fluid 1 or Fluid 2 or is shared by both. In this last case, the shares of Fluid 1 and 2
are determined by the position of the interface along the edges of that element. At each
time step, given uhn and ’hen for the time level n, we determine uhn+1, p

h
n+1 and ’hen+1, where

u and p are the velocity and pressure respectively. The Navier–Stokes equations are solved
using a generalized streamline operator technique as described in References [17, 18]. The
density and viscosity, � and �, used in the Navier–Stokes equations are expressed based on
the edge-tracked representation of the interface function:

�h =’he�1 + (1− ’he)�2 (1)

�h =’he�1 + (1− ’he)�2 (2)

In marching from time level n to n+1, given ’he, we �rst calculate a nodal representation
’h, for example by using a least-squares projection:∫

�
 h(’hn − ’hen ) d�=0 (3)

where  h is the test function. A projection of the kind given by Equation (3) is carried out
so that we can update the interface by using the advection equation that governs ’:

@’=@t + u · @’=@x=0 (4)

To compute ’hn+1, we use the discretized form of Equation (4). From ’hn+1 we obtain ’hen+1
by a combination of a least-squares projection:∫

�
( hen+1)P((’

he
n+1)P − ’hn+1) d�=0 (5)

and corrections to enforce volume conservation for chunks of Fluid 1 and 2. This volume
conservation condition among the �uid chunks can symbolically be written as

VOL(’hen+1)=VOL(’
he
n ) (6)

The subscript P in Equation (5) is used for representing the intermediate values following the
projection, but prior to the corrections for the volume conservation. In addition,  he is the
test function associated with ’he. In the remainder of this section we provide more details of
the implementation.
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Based on Equation (5), we write (’hen+1)P =H (’hn+1 − 0:5), where H is the Heaviside func-
tion. In this case, ( hen+1)P = �(’hn+1 − 0:5), where � is the Dirac function. We approximate the
volume conservation condition given by Equation (6) with its global version, as given by the
following equation:

∫
�
(’hen+1 − ’hen ) d�=Q (7)

where Q is the mass in�ow=out�ow in the time interval [n; n+ 1]. An iterative procedure is
employed to satisfy Equation (7). The mass balance ratio is de�ned as

Rm=
(∫

�
(’hen+1 − ’hen ) d�

)/
Q (8)

for Q �=0, and as

Rm=
(∫

�
’hen+1 d�

)/(∫
�
’hen d�

)
(9)

for Q=0. The residual Rm needs to be equal to 1.0 for volume conservation. To achieve this
’hn+1 is corrected iteratively as follows:

’hn+1; i+1 =’hn + (’
h
n+1; i − ’hn)=(Rm)k (10)

where k=sign(’hn+1; i −’hn) and i is the iteration counter. An alternative correction algorithm
can be written as ’hn+1; i+1 =’hn+1; i + |’hn+1; i − ’hn|(1:0 − Rm). The iterations continue until
the volume conservation condition is reached, i.e. |Rm − 1:0|¡�R, where �R is an acceptable
tolerance. When the convergence is reached, ’hn+1 generates a volume-conserving value for
’hen+1. This value serves as the starting point for the computations in marching from n+ 1 to
n+ 2.

Remark 1
The projection speci�cally given by Equation (3) is a consistent way of reconstructing ’h

from ’he. In addition to this consistency, we need ’h to have a value of 0.5 at the interface.
Equation (3), by itself, does not ensure that. Projection techniques that do satisfy this require-
ment were recently proposed in References [21–23]. In this paper, as a shortcut, we skip the
projection in the elements crossed by the interface. This means that the converged value of ’h

coming from the iterations given by Equation (10) is preserved in regions near the interface.
With this approach, the ’h obtained from the projection maintains a value of 0.5 at the in-
terface and is still sharp to a certain degree. Nevertheless, the occasional use of Equation (3)
also near the interface is useful to smooth ’h at times it exhibits excessive oscillations near
to the interface. The error introduced by such occasional projections is practically negligible
in a transient analysis.

Remark 2
The volume conservation corrections can be made in two di�erent ways: adjusting the locations
of the interface along the edges [12] or adjusting the value of the node-based representation
of the interface. In this work we selected the second alternative.
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Remark 3
A sub-element integration technique is used for accurately carrying out the spatial integrations
over the elements crossed by the interface. The sub-elements can be generated by a regular
subdivision [19, 20]. They can also be generated by a subdivision along the interface, which
is more straightforward in the ETILT than it is in the MLIT. According to our experience in
computation of the type of problems we consider here, the two subdivision approaches yield
very comparable results. De�ning the �uid properties as given by Equations (1) and (2), to-
gether with the sub-element integration approach, is one of the unique features of the ETILT.
Furthermore, techniques based on smoother interface functions (see References [6–11]), in-
cluding the level set techniques (which are based on a distance function), require periodically
reconstructing the interface function (or the distance function). This is automatically taken
care of in the ETILT with Equation (3). On the other hand, with respect to the solution of
the advection equation, the ETILT involves mesh and time-step size limitations similar to
those involved in techniques based on smoother interface functions.

Remark 4
As we march from time level n to n + 1, we solve the Navier–Stokes equations based on
the interface position at time level n, without updating the interface during the non-linear
iterations. Following that, and using the velocity �eld just computed for time level n + 1,
we calculate the interface position at n + 1. We then move on to the next time step. In
the ETILT, with its original way of handling the coupling between the Navier–Stokes and
interface update equations (see References [12, 21–23]), the interface update is embedded in
the non-linear iterations of the Navier–Stokes equations. According to our experience with
computation of the type of problems we report here, the original coupling approach and
its approximate version we use here give similar results. We use backward di�erence time-
integration for both the Navier–Stokes and advection equations. For the problems we consider
here, we observe no signi�cant variations in the results if we instead use central di�erencing
for either of the two equations or for both.

Remark 5
How the wall boundary conditions are handled in�uences the interface motion. We see a
number of approaches in the literature (see for example References [6–11]), such as using high
mesh re�nement near the wall or using a frictional wall law. Assuming that the inertial e�ects
are dominant over the viscous ones and using, for simplicity, free-slip boundary conditions is
also quite common in the literature (see References [6–11]). We provide some brief comments
in Section 3.3 based on a comparative evaluation of both the free- and no-slip conditions.

3. NUMERICAL EXAMPLES

3.1. Filling of a step cavity

This problem was proposed in Reference [8] as a simple test for mould �lling, and it was
computed in Reference [20] to evaluate the performance of the MLIT in open systems. The
problem layout is shown in Figure 1. Initially the front of the �lling material (Fluid 1) is
located at x=0:02m inside the lower step mould, while the rest of the cavity is occupied by
air (Fluid 2). Both �uids are initially at rest. A uniform velocity pro�le of 0:1m=s is imposed
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Figure 1. Filling of a step cavity. Problem layout.

at the in�ow boundary, and traction-free conditions are imposed at the out�ow boundary.
Free slip conditions are assumed at the walls. The �uid material properties, obtained from
Reference [8], are also given in Figure 1. The domain is discretized with a uniform �nite
element mesh composed of 700 isoparametric four-noded (bilinear) elements. The time step
size used in the computations is 0:01 s.
The results obtained with the ETILT are compared with those obtained with the MLIT

and the standard interface-capturing technique. The MLIT has an interface mesh de�ned with
60 points, and the standard technique is the one described [6], with no rede�nition of the
interface during the transient analysis.
Figure 2 shows the front positions at various instants during the simulation. In the early

stages, the low in�ow velocity allows the front to spread under the in�uence of the gravity.
In those stages, the horizontal motion of the front near the upper wall is diminished because
the e�ect of the in�ow velocity is reduced by the e�ect of the gravity. After the front reaches
the vertical wall of the lower step, the height of the �lling material becomes nearly uniform
until t=1:0 s. Then, the e�ect of the sudden change in the �ow direction becomes apparent,
and the upper step starts �lling. The material moves along the vertical wall of the upper step.
Soon after that a channel �ow develops as the material exits through the out�ow boundary.
At t=2:5 s a nearly steady state is reached. Overall, a reasonably good agreement between
the three techniques can be observed. In particular, the results obtained with the ETILT agree
very well with those obtained with the MLIT. We note that the oscillations seen in some
regions in solutions obtained with the standard interface-capturing technique are not present
in the solutions obtained with the ETILT.
Figure 3 shows the contours of ’h at various instants. The interface-sharpening e�ect of

the projection given by Equation (3) can clearly be noted for the ETILT results.

3.2. Gravity-driven �ow of an aluminium alloy in an obstructed vertical channel

The problem set up is shown in Figure 4. Initially the alloy front is at h0 = 0:09m (at the top
of the channel h=0:1m). The rest of the channel is occupied by air. Both �uids are initially
at rest. Traction-free conditions are imposed at both the in�ow and out�ow boundaries. Slip
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Figure 2. Filling of a step cavity. Interface positions at various instants, obtained with
(a) the ETILT, (b) MLIT, and (c) the standard technique.

Figure 3. Filling of a step cavity. Contours of ’h at various instants, obtained with
(a) the ETILT, and (b) the standard technique.

boundary conditions are assumed at the walls. The �uid material properties are also shown
in Figure 4. For the viscosity of the air, a value 100 times the actual one is used to prevent
numerical oscillations caused by the turbulent air �ow. Actual physical values are used for
all other �uid properties. The �nite element mesh used has 1900 isoparametric four-noded
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Figure 4. Gravity-driven �ow of an aluminium alloy in an obstructed vertical channel. Problem layout.

elements. The minimum time step size is 0:001s. The results are compared with those obtained
with the MLIT, using a moving interface mesh composed of 20 points.
Figure 5 shows the front positions at various instants. Before the alloy reaches the ob-

struction, the front motion is primarily governed by a friction-free particle motion, where the
position and the velocity can be expressed as h0−0:5gt2 and −gt, respectively. The air velocity
through the obstruction increases. As the air is compressed in the upper side of the obstruction
wall (t=0:080 s), a sudden increase in the horizontal component of the air velocity occurs in
this zone. The front accelerates and an alloy jet starts to develop. Then, the front continues to
move downward, surrounded by air with high induced vortices. The alloy reaches the out�ow
boundary at t=0:117 and 0:113s for the MLIT and ETILT simulations, respectively. Overall,
there is a reasonably good agreement between the ETILT and MLIT solutions.
Figure 6 shows the time evolution of the front position and velocity along the vertical central

line. It can be seen that initially the front moves like a friction-free particle. Parabolic and
linear pro�les are obtained respectively for the position and velocity, until around t=0:09 s.
This is consistent with the assumption of slip conditions at the walls and negligible pressure
gradient in the alloy. This trend is captured slightly better by the MLIT solution. When the
�lling material crosses the obstruction, we see a sudden increase in the velocity, inversely
proportional to the ratio of the gap and channel widths. For both the MLIT and ETILT
simulations, the front accelerates at such a level that the bottom of the channel is reached in
less time than what we would have for a friction-free particle model (0:134 s).

3.3. Collapse of a liquid column

Due to the availability of experimental data [25, 28] for this problem, several researchers
[24, 26, 27] used it as a test case to check the performance of the methods they were using.
The problem layout is shown in Figure 7. In this paper we consider two con�gurations:
an open receptacle with a liquid column ‘slenderness’ ratio of 1.0, and a closed receptacle
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Figure 5. Gravity-driven �ow of an aluminium alloy in an obstructed vertical channel. Interface positions
at various instants, obtained with the ETILT and MLIT.
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Figure 6. Gravity-driven �ow of an aluminium alloy in an obstructed vertical channel. Time evolution
of the front position (a) and velocity (b) along the vertical central line.

Figure 7. Collapse of a liquid column. Problem layout for open (a) and closed (b) receptacle.

with 2.0. The column width is L=0:05715 m. The liquid column is initially at rest and
con�ned between the left wall and the ‘gate’ that is assumed to be suddenly removed at time
t=0 s. Slip conditions are assumed at the solid surfaces and the pressure is set to zero at the
top of the rectangular computational domain. The �uid properties used in our computations
are those reported in Reference [24]: �1 = 1000 kg=m3 and �1 = 0:5 kg=m=s for the liquid, and
�2 = 1 kg=m3 and �2 = 0:001 kg=m=s for the gas. The time step size used in the calculations
is 0:001 s.

3.3.1. Open receptacle. The time evolution of the front position at the bottom wall (point
B in Figure 7) is shown in Figure 8. The plots are in dimensionless time, t(g=L)1=2, and
dimensionless position, x=L. For both the ETILT and MLIT, the �nite element mesh (‘�ne
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Figure 8. Collapse of a liquid column in an open receptacle. Time evolution of the front
position at the bottom wall (point B): (a) �ne mesh and �1 = 0:5 kg=m=s, (b) coarse mesh
and �1 = 0:5 kg=m=s, (c) �ne unstructured meshes (UQ: quadrilaterals and UT: triangles)

and �1 = 0:5 kg=m=s, and (d) �ne mesh and �1 = 0:001 kg=m=s.

mesh’) is uniform and has 120× 45 isoparametric four-noded elements. The MLIT has a
moving interface mesh de�ned with 40 points. The results are shown in Figure 8(a) together
with those obtained with a smooth particle hydrodynamic formulation (CSPH) [24] and those
obtained experimentally [25]. Very similar results are obtained with a ‘coarse mesh’ composed
of 40× 15 elements (see Figure 8(b)). Figure 8(c) shows the numerical results obtained by
using unstructured meshes composed of quadrilateral and triangular elements, which are very
comparable. These results are also very comparable to those shown in Figures 8(a) and 8(b).
Computations were carried out also with �1 = 0:001 kg=m=s. In this case convergence was
achieved only with the �ne mesh. The ETILT and MLIT results, which are very close, are
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Figure 9. Collapse of a liquid column in an open receptacle. Time evolution of the front
position at the left wall (point A): (a) �ne mesh and �1 = 0:5 kg=m=s, (b) coarse mesh and
�1 = 0:5 kg=m=s, (c) �ne unstructured meshes (UQ: quadrilaterals and UT: triangles) and

�1 = 0:5 kg=m=s, and (d) �ne mesh and �1 = 0:001 kg=m=s.

shown in Figure 8(d). We note that the discrepancy in the positions predicted numerically
and measured experimentally is almost constant. This discrepancy corresponds to a time lag
of approximately 0:008 s (0.1 in dimensionless time) between the experimental and numerical
results. If we shift the numerical results to the right (or the experimental results to the left) by
approximately 0.1 dimensionless time unit, we obtain a picture very similar to what we see in
Figure 8(a) for the ETILT. Because of this, we think that the slight discrepancy might be due
to the start up conditions. The time evolution of the front position at the left wall (point A)
is shown in Figure 9. The results obtained with the ETILT and MLIT are in good agreement
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Figure 10. Collapse of a liquid column in an open receptacle. Interface positions at various instants,
obtained with (a) the ETILT, and (b) MLIT.

with the experimental results [25]. The interface positions at various instants computed with
the ETILT and MLIT are shown in Figure 10. They show qualitatively good agreement
with the numerical [24] and experimental [25, 28] results. We repeated the computations for
�1 = 0:001 kg=m=s with a time step 10 times larger (0:01 s). With this large time step size,
while the MLIT computations converge, the ETILT computations do not. Better understanding
of this particular behaviour of the ETILT is one of our future topics of investigation.
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Figure 11. Collapse of a liquid column in a closed receptacle. Time evolution of the front position
(a) at the bottom wall (point B) and (b) at the left wall (point A).

For a brief, comparative evaluation of the free-slip and no-slip conditions on the wall,
in a separate test computation we changed the free-slip conditions to the no-slip conditions.
With that we used higher mesh re�nement near the wall. We observed that the corresponding
results obtained with the ETILT (not shown here) are very comparable to those shown in
Figures 8–10.

3.3.2. Closed receptacle. The time evolution of the front position at the bottom wall (point B),
obtained with the ETILT is shown in Figure 11(a). The results are compared with those
obtained with another numerical method, POOL3D [26], and from experiments [25, 28]. In
this case the dimensionless time is t(2g=L)1=2. The �nite element mesh is uniform and has
120× 90 four-noded elements. The computations are carried out with �1 = 0:001 kg=m=s. We
compute with the ETILT and also with the ETILT with a turbulence model (‘ETILT=TM’).
In the ETILT=TM, for both �uids, we use as viscosity min(� + �(lmix)2�; �max), where lmix
is the mixing length that is taken here as the vortex length, and � is the e�ective strain rate,√
(2=3)� : �, where � is the strain-rate tensor. For both �uids, we set lmix =0:010 m, and set

�max to 3:0 kg=m=s for Fluid 1 and 1:0 kg=m=s for Fluid 2.
Figure 11(b) shows the time evolution of the front position at the left wall (point A). For

both point B and point A, the ETILT results are in good agreement with the experimental
results [25].
Although the ETILT with no turbulence model predicts slightly more advanced front posi-

tions at the bottom wall, overall the �ow patterns look reasonable until the liquid impinges on
the right wall. After that point in time, the front unrealistically climbs up the wall as seen in
Figure 12. The results obtained with the ETILT=TM for the same time period are also shown
in Figures 12, and for time periods beyond that in Figure 13. These results compare qualita-
tively well with the results reported in References [26, 27] and the photographs included in
[28]. In computations of this problem with the MLIT, the interface mesh undergoes severe
distortions, and the computations cannot be continued without remeshing of the interface.
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Figure 12. Collapse of a liquid column in a closed receptacle. Interface positions at various instants,
obtained with: (a) the ETILT, and (b) the ETILT=TM.

3.4. Bore problem

The bore problem was presented in Reference [24] to evaluate numerical performance in deal-
ing with highly unsteady problems. The layout of the idealized problem is shown in Figure 14.
A horizontal layer of water with initial depth of h0 is pushed back to the wall at one end with a
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Figure 13. Collapse of a liquid column in a closed receptacle. Interface positions at various
instants, obtained with the ETILT=TM.

Figure 14. Bore problem. Layout of the idealized problem.

velocity of v0 applied at the other end. This generates a hydraulic jump that runs away from the
wall with a wave height of h and wave speed of v. We set h0 = 0:10m and v0 =−0:2971m=s,
and use a computational domain with dimensions L=0:75m and H =0:30m. The �uid prop-
erties used in the computations are, �1 = 1000 kg=m3, �1 = 0:001 kg=m=s, �2 = 1 kg=m3, and
�2 = 0:001kg=m=s. Slip conditions are assumed at the solid boundaries, and the pressure is set
to zero at the top of the computational domain. We use the same turbulence model that we
had in Section 3.3, with the only di�erence being in the value of the mixing length, which
is set here as lmix =0:050 m. The �nite element mesh is uniform and has 75× 30 elements.
The time step size is 0:001 s.
The interface positions at various instants, obtained with the ETILT=TM are shown in

Figure 15. The water level at the left wall increases at the early stages. Once the bore is fully
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Figure 15. Bore problem. Interface positions at various instants, obtained with the ETILT=TM.

Table I. Bore problem. Mean values of the wave height and speed.

Analytical CSPH [24] ETILT=TM

Wave height (m) 0.132 0.130 0.134
Wave speed (m=s) 0.928 0.910 0.900

developed, the wave height reaches a constant level. The interface pro�les shown in Figure 15
are slightly di�erent from those reported in Reference [24], mainly due to the di�erent �uid
properties used. Nevertheless, as it is shown in Table I, the predictions for the wave height
and speed are in reasonably good agreement with those reported in Reference [24]. They are
also in good agreement with the analytical values determined from the non-linear equations
v= v0 + [gh(1 + h=h0)=2]1=2 and h=h0 = (v − v0)=v.

4. CONCLUDING REMARKS

For computation of two-�uid interfaces, we presented an interface-capturing algorithm based
on the ETILT. Because the technique is mostly node-based, managing the interface motion is
easier than it is in an interface-tracking technique. Stabilized formulations are used in �nite
element discretizations of the both the Navier–Stokes equations and the advection equation
governing the evolution of the interface function. The interface function marks the location of
the interface. Based on also tracking the interface along the element edges, the technique is
supplemented with mass-balance correction and interface-function reconstruction. With these
enhancements, the technique possesses some of the desirable features of the interface-tracking
techniques, namely the global mass conservation and the interface sharpness. With a number
of test problems, we demonstrated the e�ectiveness of the technique. Our future research di-
rections will include alternative projection algorithms for reconstructing the interface function;
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mass conservation by directly correcting the interface locations along the element edges; and
extending the technique, with its enhancements, to bubble and drop formations.
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